Airflow Dynamics of Human Jets: Sneezing and Breathing - Potential Sources of Infectious Aerosols
نویسندگان
چکیده
Natural human exhalation flows such as coughing, sneezing and breathing can be considered as 'jet-like' airflows in the sense that they are produced from a single source in a single exhalation effort, with a relatively symmetrical, conical geometry. Although coughing and sneezing have garnered much attention as potential, explosive sources of infectious aerosols, these are relatively rare events during daily life, whereas breathing is necessary for life and is performed continuously. Real-time shadowgraph imaging was used to visualise and capture high-speed images of healthy volunteers sneezing and breathing (through the nose - nasally, and through the mouth - orally). Six volunteers, who were able to respond to the pepper sneeze stimulus, were recruited for the sneezing experiments (2 women: 27.5±6.36 years; 4 men: 29.25±10.53 years). The maximum visible distance over which the sneeze plumes (or puffs) travelled was 0.6 m, the maximum sneeze velocity derived from these measured distances was 4.5 m/s. The maximum 2-dimensional (2-D) area of dissemination of these sneezes was 0.2 m(2). The corresponding derived parameter, the maximum 2-D area expansion rate of these sneezes was 2 m(2)/s. For nasal breathing, the maximum propagation distance and derived velocity were 0.6 m and 1.4 m/s, respectively. The maximum 2-D area of dissemination and derived expansion rate were 0.11 m(2) and 0.16 m(2)/s, respectively. Similarly, for mouth breathing, the maximum propagation distance and derived velocity were 0.8 m and 1.3 m/s, respectively. The maximum 2-D area of dissemination and derived expansion rate were 0.18 m(2) and 0.17 m(2)/s, respectively. Surprisingly, a comparison of the maximum exit velocities of sneezing reported here with those obtained from coughing (published previously) demonstrated that they are relatively similar, and not extremely high. This is in contrast with some earlier estimates of sneeze velocities, and some reasons for this difference are discussed.
منابع مشابه
A Numerical Simulation of Inspiratory Airflow in Human Airways during Exercise at Sea Level and at High Altitude
At high altitudes, the air pressure is much lower than it is at sea level and contains fewer oxygen molecules and less oxygen is taken in at each breath. This requires deeper and rapid breathing to get the same amount of oxygen into the blood stream compared to breathing in air at sea level. Exercises increase the oxygen demand and make breathing more difficult at high altitude. In this study, ...
متن کاملCharacterizing exhaled airflow from breathing and talking.
UNLABELLED The exhaled air of infected humans is one of the prime sources of contagious viruses. The exhaled air comes from respiratory events such as the coughing, sneezing, breathing and talking. Accurate information on the thermo-fluid characteristics of the exhaled airflow can be important for prediction of infectious disease transmission. The present study developed a source model to provi...
متن کاملA schlieren optical study of the human cough with and without wearing masks for aerosol infection control.
Various infectious agents are known to be transmitted naturally via respiratory aerosols produced by infected patients. Such aerosols may be produced during normal activities by breathing, talking, coughing and sneezing. The schlieren optical method, previously applied mostly in engineering and physics, can be effectively used here to visualize airflows around human subjects in such indoor situ...
متن کاملRespiratory Source Control Using Surgical Masks With Nanofiber Media
BACKGROUND Potentially infected individuals ('source') are sometimes encouraged to use face masks to reduce exposure of their infectious aerosols to others ('receiver'). To improve compliance with Respiratory Source Control via face mask and therefore reduce receiver exposure, a mask should be comfortable and effective. We tested a novel face mask designed to improve breathability and filtratio...
متن کاملTransport of particulate and gaseous pollutants in the vicinity of a human body
A uniform pollutant concentration in indoor environments can be an inappropriate representation of breathing concentration. This is especially true when local airflow in the vicinity of an occupant is dominant in transporting pollutants. The present study investigates the airflow in the vicinity of a human body, effects of respiration on breathing concentration of particulate and gaseous pollut...
متن کامل